NOTICE
WARNING CONCERNING
COPYRIGHT RESTRICTIONS

The copyright law of the United States [Title 17, United States
Code] governs the making of photocopies or other reproductions
of copyrighted material

Under certain conditions specified in the law, libraries and archives
are authorized to furnish a photocopy or other reproduction.One of
these specified conditions is that the reproduction is not to be
used for any purpose other than private study, scholarship, or research.
If a user makes a request for, or later uses, a photocopy or repro-
duction for purposes in excess of "fair use," that use may be liable
for copyright infringement.

This institution reserves the right to refuse to accept a copying
order if, in its judgement, fullfilment of the order would involve
violation of copyright law. No further reproduction and distribution
of this copy is permitted by transmission or any other means.

www.manaraa.com

On Describing the Behavior and
Implementation of Distributed Systems*

Nancy A. Lynch
Georgia Institute of Technology
Atlanta, Georgia 30332/USA

Michael U. Fischer
University of Washington
Seattle, Washington 98195/USA

Abstract: A simple, basic and general model for describing both the (input-output)
behavior and the implementation of distributed systems is presented. An important
feature of the model is the separation of the machinery used to describe the imple-
mentation and the behavior. This feature makes the model potentially useful for
design specification of systems and of subsystems.

The implementation mpdel relies on the basic notions of process and variable,
assuming indivisibility of variable access. Long-distance communication is modelled
by a special process representing a "channel." Process executions are considered to
be completely asynchronous; this consideration is reflected in the fairness of the
operations for combining processes. The primitivity and generality of the model make
it an apparently suitable basis for cost comparison of various message-passing
protocols and other higher-level programming constructs, as well as of complex dis-
tributed system implementations.

A system's (input-output) behavior is modelled by a set of finite and infinite
sequences of actions, each action involving access to a variable.

Basic definitions, examples and characterization results are given. An extended
example, involving specification and implementation of an arbjter system, is presented.
For this example, equivalent implicit and explicit specifications are given. Several
different implementations are described, each of which exhibits the required
behavior.

General remarks are made about cost comparison of distributed system implemen-
tations.

*
This research was supported in part by the National Science Foundation under grants
MCS77-02474 and MCS77-15628.

148

I. TIntroduction

A distributed computing system consists of a number of distinct and logically
separated communicating asynchronous sequential processes. To gain a theoretical
understanding of such systems, it is necessary to find simple mathematical models
which reflect the essential features of these systems while abstracting away irrel-
evant details. Such models allow problems to be stated precisely and make them
amenable to mathematical analysis.

In this paper, we present a mathematical model of distributed systems and a
mathematical model of their input/output behavior. Both are set-theoretic models
built from standard mathematical constructs such as set, sequence, function, and
relation, rather than axiomatic models consisting of Tists of desired properties of
systems without a basis for validity or consistency.

In constructing a model, choices must be made regarding which features of actual
systems to preserve and which to abstract away, and how these choices are made depends
on the intended applications of the model. Our interests are in finding a low-level
model that reflects closely many aspects of physical reality and that permits problems
of communication and synchronization to be studied. Thus, we do not assume any
primitive synchronization mechanism such as is implicit in Petri nets [1] or in the
communicating sequential processes of Hoare [2] and of Milne and Miiner [3]. We have
also chosen to omit from our model any notion of time. Although we realize clocks and
time-outs are important mechanisms in real distributed systems, many aspects of dis-
tributed computation can nevertheless be modelled without reference to such concepts,
and the resulting simplicity and tractability of the model more than compensates for
the limitations imposed on it. Eventually, of course, time needs to be introduced into
a suitable formal model and studied.

We are concerned with the cooperative behavior of processes, not their internal
structure. Hence, we assume simply that each process is an automaton with a possibly
infinite number of internal states and an arbitrary set of possible transitions. Each
process from time to time takes a step, but we make no assumptions on how long it waits
between steps except that the time is finite -- it does not wait forever,

We also permit our processes to exhibit infinitely~branching nondeterminism.
This is done because we wish our notion of "process" to encompass not only what a
single processor acting alone can do but also what a subsystem of processes or module
can do. That will permit us to describe the behavior of a complete system in terms of
the behaviors of component modules. Since a system of two deterministic processes can
exhibit infinite nondeterminism, we are led to include this capability in our model.

We have chosen the shared variable as our basic (and only) communication mechanisn,
Because of the popularity of message-based distributed systems and the immediate re-
action that a "central” shared memory does not constitute true distribution, some words

149

about this choice are in order.

First of all, at the most primitive level, something must be shared between two
processors for them to be able to communicate at all. This something is usually a
wire in which, at the very least, one process can inject a voltage which the other
process can sense. We can think of the wire as a binary shared variable whose value
alternates from time to time between 0 and 1. Note that we are not specifying the
protocols to be used by the sending and receiving processes which enable communica-
tion to take place -- indeed part of our interest is in modelling and studying such
protocols. A1l we have postulated so far is that the sending process can control the
value on the wire and the receiving process can sense it. The setting and sensing
correspond to writing and reading, respectively. We contend that shared variables
are at the heart of every distributed system.

Because of our decision to Teave time out of the model, it is clear that the only
way for the receiving process to be sure of seeing a value written by the sending
process is for the latter to leave the value there until it gets some sort of acknow-
Tedgement from the receiver. Thus, we cannot model the asynchronous serial communi-
cation that is commonly used to communicate between terminals and computers, for the
success of that method relies on sender and receiver having nearly identical clocks.

We have argued so far that shared variables underlie any timing-independent
system, but that certain kinds of communication which depend on time cannot be modelled.
Does introducing timing-dependent communication primitives into our otherwise timing-
independent system add any new power? Let's consider various possible message primi-
tives. Perhaps the simplest is to assume each process has a "mailbox" [VAX/VMS] or
"message buffer” into which another process can place a message. Now, what happens
when the sender wants to send a second message before the receiver has seen the first?
If the second message simply overwrites the first, then the buffer behaves exactly
like a shared variable whose values range over the set of possible messages. If the
sender is forced to wait, then there is an implicit built-in synchronization mechan-
ismas in [2,3] which we have already rejected for our model. As a third possibility,
the message might go into a queue of waiting messages. If the queue is finite, the
same problem reappears when the queue gets full. An infinite queue, on the other
hand, seems very non-primitive and can be rejected for that reason alone. In any
case, if the needed storage is available, the infinite message queue can be modelled
in our system by a process with two shared variables: an input buffer and an output
buffer. The process repeatedly polls its two buffers, moving incoming messages to
its internal queue, and moving messages from the queue to the output buffer whenever
it becomes empty. Of course, the sender must wait until the input buffer becomes
émpty before writing another message, but it seems to be an essential property of any
communication system that there will be a maximum rate at which messages can be sent,
and the sender attempting to exceed that rate must necessarily wait if information s

150

not to be Tost. (We note also that the delays inherent in long-distance communication
between asynchronous processes can also be modelled simply in our framework.)

From the above discussion, we see that various message systems can be modelled
naturally using shared variables, provided the variables are not restricted to binary
values. Also, there are situatfons in which it is natural for a variable to have more
than one reader or writer. We incorporate such generalized variables in our model.
Finally, we generalize our model in one more respect by permitting a variable to be
read and updated in a single step. We call such an operation test-and-set. This
simpTlifies the model since both reads and writes are special cases of test-and sets.
Moreover, there are situations in which the natural primitive operations are not read
and write but are other test-and-set operations such as Dijkstra's P and V [4]. They
all become just special cases of our general model. The formal definition of the model
appears in Section 2.

A class of interesting and important questions to be addressed by a theory of dis-
tributed systems concerns the relative "goodness" of various systems all of which solve
the "same" problem. Before these questions can be investigated, one needs appropriate
measures of "goodness" (complexity measures) and one needs a precise notion of the
"problem" to be solved by a distributed system. We make some brief remarks about com-
plexity measures in Section 5, but a thorough treatment must await another paper. In
Section 3, we construct a formal notion of "distributed problem" and define precisely
when a given system solves a given problem. Section 4 gives an example of a distribu-
ted problem and several radically different systems for solving it.

Several factors contribute to making a satisfactory notion of "distributed prob-~
lem" considerably more complicated than the simple input-output function which is
often identified with the behavior of a sequential program.

1. There is generally more than one site producing inputs and receiving outputs,
Infinite, non-terminating computations are the rule rather than the exception.

The relative orders of reading inputs and producing outputs is significant as
well as the actual values produced.

4. Variations in timing make distributed systems inherently nondeterministic, so
one must allow in general for several different possible outputs to a given
sequence of inputs, all of which must be considered "correct".

Briefly, we define the behavior of a distributed system to be a set of finite
and infinite sequences of interleavings of possible activities at certain external
variables (which are assumed to be used for communication with the outside world).
Each sequence in the set describes a possible sequence of actions by the system,
assuming particular actions affecting the variables by the environment. An action is
a triple (u,x,v) consisting of a variable x, the value u read from the
variable and the value v written back into the variable. Since the environment can
change a variable at any time, it is not true that the system will necessarily see
the same value in a variable that it most recently wrote there. We require of the

151

behavior only that it be complete in that it describe at least one possihle series of
responses by the system for every possible way that the envirorment might behave.

A problem specification is an arbitrary set of input/output sequences. A partic-
ular system is a solution to the problem if its behavior is contained in the problem
specification. The problem specification is the set of acceptable computations, while
the solutjon behavior is the set actually realized.

Our definition only requires the solution system to be correct; there is no stip-
ulation that the maximum permitted degree of nondeterminism actually be exhibited. We
regard the latter as a performance or complexity issue to be dealt with separately.

We remark that the distributed computing paradigm leads one to a very different view
of nondeterminism or concurrency than for multiprocessing. In the latter case, the
system implementer is presumed to have control of the scheduler, so the greater the
possible concurrency among the processes he is trying to schedule, the greater his
freedom to do so efficiently. In a truly asynchronous environment, however, one has
no direct control over the scheduling, so it is natural to be concerned with the worst
case {which might actually occur) rather than the best case. Hence, decreasing the
amount of nondeterminism in this situation can never hurt.

We do not address in this paper another important aspect of problem specification,
namely, what is an appropriate formal language for describing the sets of sequences
that comprise a problem specification? Our example in Section 4 1is described inform-
ally in standard mathematical notation. We expect the work on path expressions [5,
etc.], flow expressions [6], and other formal systems of expressions might be applica-
ble here.

2. A Model for Distributed Systems

Processes and Shared Variables

The primitive notions in our model are that of “process" and variable". A pro-
cess can be thought of as a sequence of changes of state; likewise, a variable is a
sequence of changes of value. The interaction among system components occurs at the
process-variable interface.

Each variable x has an associated set of values, vatues(x), which the variable
can assume. A variable action for x is a triple (u, x, v) with u, v € values(x);
intuitively, it represents the action of changing the value of x fromu (its o1d value)
to v {its new value). (u and v are not required to be distinct.) Act(x) is the set
of all variable actions for x. If X is a set of variables, we let act(X) =xgxact(x).

A process p has an associated set (finite or infinite) of process states,
states(p), which it can assume. Start(p) is a nonempty set of starting states, and
final(p) a set of final or halting states. We let nonfinal(p) = states(p) - final(p).

152

A process action for p is a triple (s, p, t) withs e nonfinal(p), t e states(p); it
represents intuitively the action of p going from state s to state t in a single step.
(s and t are not required to be distinct.) Act(p) is the set of all process actions

for p. If P is a set of processes, we let act(P) df U act{p).
peP

Every process action occurs in conjunction with a variable action; the pair forms
a complete execution step. If P is a set of processes and X a set of variables, we
let steps(P,X df act(P) x act(X) be the set of execution steps. To specify which
steps are permitted in a computation, a process has two other components in its des-
cription. Variables(p) is a set of variables which the process can access. (Oksteps(p)
is a subset of steps(p, variables(p)) describing the permissible steps of p.
Oksteps(p) is subject to three restrictions:

(a) For any s e nonfinal(p), there exist t, u, x, v with ((s, p, t), (u, %, v)}

e oksteps(p).

(b) (Read Anything): If {{s, p» t), {u, x, v)) e oksteps(p) and u' e values(x)
then there exist t', v' with ({(s, p, t'), {(u', %, v'}) € oksteps(p).

(¢} (Countable Nondeterminism): Start(p) is countable, and also for any
s ¢ nonfinal{p), x e variables{p) and u £ values(x), there are only countably
many pairs t, v with {{s, p, t), (u. x, v)) ¢ oksteps(p).

Some intuitive remarks are in order. Oksteps(p) represents the allowable steps
of p. A particular step ((s, p, t), (us x, v)) e oksteps(p) is applicable in a given
situation only if p is in state s and x has value u. (a) indicates that some step is
applicable from every nonfinal state. In general, more than one step might be appli-
cable; hence, we are considering non-deterministic processes. However, restriction
(c) 1imits the number of applicable steps to being countable, a technical restriction
we need later for some of our results. The effect of taking the step is to put p into
state t and to write v into x. A step is considered an atomic, indivisible action in
our model. With respect to the variable x, a step involves a read followed by a write
-~ the read to verify that the transition is applicable and the write to update its
value. We term such an action a "test-and-set". This is a generalization of the
familiar Boolean semaphores or test-and-set instructions found on many computers.

Restriction (b) formalizes an important assumption that a process be able to re-
spond in some way to anything that might be given to it as input. In other words, if
it is possible for a process in state s to access variable x, then there must be a
transition from s accessing x for every u e values{x)}.

A process is not required to be finite-state, nor to have a finite number of
transitions from any state. Later (Theorem 3.7), we will see that countable nondeterm-
inism arises from application of natural combination operations to even deterministic
processes. Since we wish to treat single processes and groups of processes uniformly,

153
we allow the greater generality from the beginning.

Systems of Processes

The way in which processes communicate with other processes and with their envir-
onment is by means of their variables. A value placed in a variable is available to
anybody who happens to read that variable until it is replaced by a new value. Unlike
message-based communication mechanisms, there is no guarantee that anyone will ever
read the value, nor is there any primitive mechanism to inform the writer that the
value has been read. Thus, for meaningful communication to take place, both parties
must adhere to previously-agreed-upon protocols, though we place no restrictions on
what kinds of protocols are allowed. Indeed, part of our motivation in defining
systems in this way is to give us a formal model in which to study such protocols.

We wish to consider variables accessed by a process or system of processes to be
either internal or external. Internal variables are to be used only by the given
process or system; thus, some consistency of the values of those variables must be
hypothesized, and an initial value must be provided. External variables will not have
such consistency requirements. That is, a process or system of processes is to be
able to respond to values of these variables other than the ones it most recently left
there. Intuitively, the external variables may be accessible to other processes (or
other external agents) which could change the values between steps of the given process
or system.

More formally, if X is a set of variables, a partial assignment for X is any

partial function f : X - |J values(x) with f(x) £ values(x) whenever f(x) is defined.
xeX

If f is defined for all x € X, it is called a total assignment for X. The full speci-
fication of a system of processes S has four components: proc(S) is a finite set of
processes, ext(S) is a set of external variables, int(S) is a set of internal variables,
and init(S) is a total assignment for int(S}. S is subject to certain restrictions:

(a) Ext{S) n int(S) = .
(b) For each p e proc(S), variables(p) < ext(S) v int(S).

If P is a set of processes and X a set of variables, we let S(P.X) gf {S : S is
a system of processes with proc(S) < P and nt{S) v ext(S) = X3.

Execution Sequences

The execution of a system of processes is described by a set of execution se-
quences. Each sequence is a 1ist of steps which the system could perform when inter-
leaved with appropriate actions by the external agent.

If A is any set, A* (A¥) denotes the set of finite (infinite) sequences of A-

154

count * W i P
elements. A denotes A u A", the set of finite or infinite sequences of elements

of A. length: Acount -+ N u {=} denotes the number of elements in a given sequence.

Let P be a set of processes and X a set of variables. E{P,X)di (steps(P,X))count
is the domain of sequences used to describe executions of processes and sets of pro-
cesses over P and X.

To define the allowable execution sequences of a system, we first define the
execution sequences for processes and sets of processes.

Let p be a process. An execution_sequence for p is a sequence
ee (oksteps(p,var‘iables(p)))Cou"t < E(p,variables(p)) for which four conditions hold.

Let e = ((51’ Ps t1): (ui’ Xi3 V-,)):il_-_-e_?gth(E)'
(a) If length{e) = 0, then start(p) n final(p) # P.
(b} If length{e) # 0, then 5| € start(p).

(¢) If e s finité, then t]ength(e) e final(p).

(d) tj = 5540 for 1 < j < length(e).

Finally, exec(p) is the set of executjon sequences for p. (Note, for example, that
this set is nonempty.) Thus, an execution sequence for a process exhibits consistency
for state changes, but not necessarily for variable value changes.

Next we describe the execution of a set of processes. We wish the execution to
be fair in the sense that each process either reaches a final state or continues to
exacute infinitely often; it cannot be "locked out" forever by other processes when
it is able to execute. In other words, processes are completely asynchronous and
thus cannot influence each other's ability to execute a step. Since no consistency
of values of variables will yet be assumed, a simple "shuffle" operation will suffice.

Let A be any set and b = (bk)kEK be an indexed set of elements of pcount,

Shuffle(b)} is the set of sequences obtained by taking all of the sequences in b and
"merging" them together in all possible ways to form new sequences. Formally, if
n e N, then define [n] = {1,...,n}. If n = =, then [n] = N. Now a sequence

ce ACount is in shuffle(b) iff there is a 1-1, onto, partial map n : K x N ~
[length(c)] such that {a)-(c) hold.

(a) m is defined for (k,n) iff n e [1ength(bk)].

(b) 7 is monotone increasing in its second argument.

th

(c) If w(k,i) = j, then ¢ = the 1~ element in the sequence bk.

The shuffle operator is easily extended to an indexed set of subsets of Acount’ viz.

1f B = (B), > where B, = A", then shurfle(8) 97 U (shuffle(b) : b = (b,) oy and
bk € B» keK}.

185

If P is a set of processes, define exec(P) gf shuffie((exec(p)) o).

peP
We now extend our notions of execution sequences to systems of processes.

If X is a set of variables, Tet B(X) 8% (act(x))®". Let b e B(X), x € X, and
f be a partial assignment for X. Latest(b, x, f) is the value left in x after per-
forming the actions in b, assuming x had initial value f(x). We define it recursively
on the length of b. If length(b) = O then

latest(b, x,) = {f(x) if f(x) is defined;
undefined otherwise.

Now assume length(b) > 1, and b = b' + (u, y, v) for some {u, y, vle act(X).

Then latest(b, x, f) = (V if x=y;
latest{b', f, x) if x#y and Tatest(b', f, x) is defined;
undefined otherwise.

Let X, K be sets of variables, b £ B(X), and f a total assignment for K. We
say b is (K,f)-consistent if for every prefix b' - {u, y, v) of b with y € K, then
v = latest(b', y, f). For sets of action sequences B < B{X), define

consisty c(8) 9f tbeB : bis (K,F)-consistent}.

Let P be a set of processes. A sequence of steps e g E(P,X) is (K,f)-consistent
provided erase(e) is (K,f)-consistent, where erase : E(P,X) -+ B(X) is a homomorphism
mapping each pair (a,b) e steps(P,X) to its second member b. For sets of execution
sequences E < E(P,X), define consistK,f(E) gf {e e E : e is (K,f)-consistent}. Now

3 df i
let S be a system of processes. Exec(S) = cons1st1nt(s)’1n1t(s)(exec(proc(5))) 3

E(proc(S), ext(S) v int(S)). Thus, exec(S) consists of those execution sequences of
the system's processes in which the internal variables are consistent across the
sequence.

Behavior Sequences

Exec(P) gives complete information on how a set of processes might execute in
any given environment. Often, however, one is not interested in how the processes
execute but only in their effect on the environment, that is, the way they change the
variables. We obtain this information from the execution sequences by extracting the
variable actions.

If 5 is a system of processes, we define the behavior of S, beh(S) df
erase(exec(S)) < B(ext(S) v int(S)).

156

Similarly, we define the behavior for a process p and a set of processes P.

Beh(p) gf erase(exec(p))

Beh(P) gf erase(exec(P)).
One might be interested in only these actions involving the external variables.
Let X, K be sets of variables, b ¢ B(X}, then e]imK(b) is the subsequence of b con-
sisting of the actions not invelving variables in K. (E]imK(b) might be finite even
if b is infinite.) We define the external behavior of S,
extbeh(S) df e]imint(s)(beh(S)L
The following proposition demonstrates the use of some of the preceding notation,

and shows an elementary implication of the read-anything property ((b) in the defini-
tion of a process).

Proposition 2.1:

Let p be a process, x g variables(p), (vi)?=] any infinite sequence of elements

of values(x). Then for some (wi)?=], it is the case that

- length(b)
b= (vixmy)iny

is in e]imvam‘ab]es(p)-{x}(ber'(p)). (That is, there is some possible execution of p
for which the sequence of values read from x is given by (vi):':1 or some prefix
thereof.)

Proof sketch. By repeated use of the read-anything property.

Operations on Systems

One goal of our formalism is to permit complex systems to be understood in terms
of simpler ones. For this, we need some operations for building larger systems from
smaller ones. Corresponding to these operations will be operations on execution
sequences and behaviors. This approach is similar to that of MiTne and Milner [3].

The first operation joins a finite collection of systems into a single one.

Let (Si)iel be a finite indexed family of systems such that

(a) i#j implies proc(S;) n proc(Sj) = .

(b) i#j implies int(Sj) n (int(Sj) U ext(Sj)) =,

Then 8 (Si) is the system S such that

iel
proc(s) = U proc(s,),
iel

ext(s) = ext(Si),
iel

157

int(s) = int(Si),
iel
init(s) = |J init(Si).
iel
We define 8 for finite indexed families of execution sets and indexed families
of behaviors to be simply the shuffle operation.

The second operation on systems is the one of turning selected external variables
into internal ones. Let S be a system, K a set of variables and f a total assignment
for K such that K n int(S) = p. We define consistK f(S) to be the system S' such

that proc(S') = proc(S), ext(S') = ext(S) - K, int(8') = int(S) v K, and init(S') =
inft(s) v f. ConsistK £ has already been defined for execution sets and behaviors.

That these definitions all make sense together is shown by the following.

Theorem 2.2. The following diagram commutes. (p denotes the power set operator.)

S* exec (P(E))* erase (P(Bi)*
I " ’
3 exec Yy PlE) erase y P(B)
JsonsistK’f jgonsistK’f JgonsistK’f
S exec 3 P(E) erase , F(B)

7

Here we assume a fixed set P of processes and X of varjables, and we let S = S(P,X),
E = E(P,X), and B = B(X),

We omit the straightforward but tedious proof.

Modules
The two operations of @ and consisty g are sufficient to build any system from
?
one-process systems in a simple way.

Let S, S' be systems. S' is a module of S if proc(S') < proc(S), ext{S') = ext(S)
u int(8), int(S') ¢ int(S), and init(S') = init{S)/int(S') (the restriction of the
function init(S) to domain int(S'}). Thus, a module is a subsystem whose internal
variables are private to it and whose external variables form the interface between
the module and the remaining system and/or the external world.

S s partitioned into modules (Sm)meM if M is finite, S is a module of § for

each meM, (pr‘oc(sm))rm_:M is a partition of proc(S), and for all m, n € M, if m#n, then
1nt(Sm) n (1nt(Sn) u ext(Sn)) = .

A system S is atomic if it consists of a single process with no internal variables,
i.e. if |proc(8)] = 1 and int(S) = init(s) = 9.

The following propositions are immediate from the definitions.

158

Proposition 2.3. Every system can be partitioned into a finite number of atomic
modules.

Proposition 2.4. Every system can be obtained from an arbitrary partition into
modules by one application of & followed by one application of
consistK’f for appropriate K,f.

Remarks on Communication Mechanisms

The basic communication mechanism in our model is the availability of the last
written value. We work at a "primitive" level, not basing communication on "messages"
as do Hoare [2], Feldman [7] and MiTne and Milner [3]. Some message models involve
an implicit queuing mechanism or implicit process synchronization, neither of which
we wish to assume as basic. Both of these mechanisms involve significant implemen-
tation cost and require cost analysis in terms of a more primitive common basis.
Neither mechanism seems to be universal in the sense that the most efficient programs
for arbitrary tasks would always be written using it. Moreover, the abstraction of
automatic process synchronization serves to hide the asynchrony of the basic model.
Since we wish to understand asynchronous behavior, we prefer not to mask it at the
primitive levels of our theory.

The generality of our process and execution sequence definitions assumes possible
indivisibility of a fairly powerful form of variable access. In particular, processes
that can both read and change variables in one indivisible step (such as the "test-
and set" processes of Cremers-Hibbard [8] and Burns et al [9] are included in the
general definitions. Some readers may consider this general access mechanism to be
and "writes" only is more realistic. Such a process model can be defined by certain
restrictions on our general model (as we describe below). Thus, our development not
only specializes to include consideration of a read-write model, but also allows
comparison of the power of the read-write model with that of the more general access
model. The specialization can be carried out as follows.

A process p is called a read-write process provided for each s e states{p) and
each x ¢ variables(p), the set
oksteps(p) n {{(s,p,t),(u,x,v)) : t e states(p), u, v e values(x)}
can be partitioned into a collection of subsets T, with each T € T satisfying (at
least) one of the following.
{a) (7 describes a "read".)
For all {{s.p,t),{u,x,v)) in T, it is the case that u = v. Moreover, for
each u e values(x) there exists t with ((s,p,t),{u,x,u)) in T.
(b) (T describes a "write".)
For some t,v, T = {((s,p,t),(u,x,v)) : u e values(x)}.

Two very simple examples follow.

159

Example 2.5. Let states(p) = start{p) = {s}, final(p) = o, variables(p) = {x},
vatues(x) = {01}, and oksteps(p) = {((s.p,s),(0,x,1)), ({s,p.5),(1,x,0))}. Process
p simply examines x repeatedly, changing its value at each access. The change is
clearly an activity that invelves both reading and writing, so that, intuitively, p
is not a read-write process. Formally, if p were a read-write process, oksteps(p)
would be partitionable as above. No T can describe a read since it is never the case
that u = v. So ((s,p,s),(0,x,1)) is in T for some T which describes a write. But
then ((s,p.s),(1,x,1)) is in T c oksteps(p) as well, a contradiction.

Example 2.6. Let states(p) = start(p) = {s}, final(p) = P, variables(p) = {x}, and
oksteps(p) = {({s,p,5),(0,%,1}), {(s,p,5),(1,x,1))}. Process p simply examines x
repeatedly, writing "1" every time. It is easy to see that p is a read-write process.

So far, our model describes asynchronous processes communicating by shared vari-
ables, a situation which suggests that the processes are physically located sufficiently
near to each other to share memory without delay. We also wish to model more general
"distributed" systems of asynchronous processes, in which communication is done by
means of a channel with significant transmission delay. No new primitives are required
in order to extend the present model to handle such communication. A one-way channel
is simply modelled by a special "channel process" p, as detailed below.

Example 2.7. Llet V be any set, states(p) = {write} x V u {read}, start(p) = {read},
final(p) = §, variables(p) = {x,y}, values(x) = values(y) = V, and oksteps{p) =
{{(read,p,{write,v)),(v.x,v)) : u,v & V} v {{{{write,u},p,read),(v,y,u)) : u,v e V}.
Process p is thought of as sharing a variable with each of two other processes. It
alternately reads from one of the variables and writes the value read in the other
variable. (p is obviously a read-write process.) When p is combined with two processes
at its ends in the manner already described in this section, the consistent execution
sequences exactly describe the effect of an arbitrary-delay channel used for commun-
jcation between the two original processes.

3, Characterizations and Elementary Examples of Behaviors

The principal justification for a formalism for describing distributed systems
is that techniques can thereby be developed for specifying requirements for their
operation. It should be possible to determine whether a particular system is a satis-
factory realization of the specified requirements. Typical requirements might involve
exclusion, fairness, synchronization and other logical correctness properties; they
can also involve performance and efficiency.

Requiring that a system exhibit exactly a specified set of execution sequences
is generally too strong. For instance, if P and p, are processes with exec(p1) c

EXEC(pZ), then P is always an adequate replacement for p,. In contrast to the usual

160

assumptions about nondeterminism, in the case of asynchronous systems all possible

nondeterministic choices should be "correct". Thus, a system exhibiting any subset
of the specified execution sequences should be acceptable. (Recall that a process

cannot have an empty set of execution sequences.)

The subset requirement above is still stronger than one would necessarily want.
We are not generally interested in requiring that the complete detail of the specified
execution sequences be exhibited by an implementing system, but rather only certain
abstracted aspects. Such aspects might be of two different types. One possibility
is to specify state reachability requirements as in Cremers-Hibbard [8] and Burns
et al [9]. A second possibility, appropriate for specifying processes or groups of
processes to be used as modules in larger systems, is to specify external behavior.
That is the type of specification we emphasize in this paper.

Monotonicity and the Adequate Replacement Property
Let Sy, S, be systems. Define S| ES, iff extbeh(S]) g_extbeh(sz). We call the

partial order "C" on systems the adequate replacement order, for we argue that S1

should always be an adequate replacement for 52’ at least for the purpase of determ-
ining logical correctness of input-output behavior,

Proposition 3.1. 4, consistK kN and e]imK as operations on P(B) preserve inclusion
E]
of subsets of B.

Proof; Immediate.

Proposition 3.2.

(a) Let (B be an indexed family of sets, where each B; < B(X), K any set of

i)iEI
varjables,

Then E1imK(e(Bi)ieI) =8 (ElimK(Bf))

iel”
(b) If K, K' are disjoint sets of variables, f a total assignment for K, B c B(X);

then E1imK.(ConsistK’f(B)) = ConsistK,f(E1imK.(B)).

Proof: Immediate.

]
Proposition 3.3.
9 and Consistk £ as operations on 8 preserve T .
Proof: By Theorem 2.2 and Propositions 3.1 and 3.2.

]

It follows that if a module S1 of a system S is replaced by an adequate replace-
ment 51', then the resulting system S' is an adequate replacement for S.

161

Equivalence of Systems

We can also define an equivalence among systems based only on their input-output
behaviors. While this equivalence is still too strong for many purposes, it neyerthe-
Tess is not so strong as notions of eguivalence based on simulation.

Let S'I’ 82 be systems. Define 51 E 52 iff extbeh(S1) = extbeh(SZ). (Thus,
e 8, 1ff 511252 and SZE.S].)

We now proceed to show that any system is equivalent to an atomic system. Thus,
groups of processes and single processes can be treated uniformly, an indication of
the usefulness of our model for modular design of systems.

We give the construction in two parts. First we show how to reduce the number
of processes to one, then we show how to eliminate the internal variables.

Lemma 3.4. For any system S, there is a system S' with the same external and internal
variables such that [proc(S')| = 1 and heh(S') = beh(S).

Proof Sketch. By induction on |proc(S)|. For instance, given a system of two process-
es py and Pys We must define a single process p whose behavior is exactly the shuffie
of those of P and Py The first obvious idea might be to allow states of p to rep-
resent pairs consisting of states of P1 and Py Transitions could be composed natur-
ally from the transitions of P and Pos essentially allowing either one. The only
problem is that nothing prevents the nondeterministic choice from always choosing to
simulate one process over the other, violating the fairness of the shuffle operation.
However, the countable branching capability of processes can be used to enforce fair-
ness. When p begins simulating one of P1s Pos it nondeterministically chooses an
integer >1 representing the number of steps p will simulate for that process hefore
shifting to the other process.
al

A process p is called treelike provided {a) and (b) hold.

{a) For all ty e states(p), [{{(s,p,>t),(usx,v)) e oksteps(p) : t

i

toH. < 1.
to}l = 0,

n

{b) For all ty e start(p), [{((s;p»t).(u.x,v)) & oksteps(p) ; t

Lemma 3.5. If p is a process, there exists a treelike process q with Beh(p) = Beh({q).

Proof Sketch. Process p can be "opened up into a tree® by replicating states; process
q has states corresponding to finite paths in p.

a]
Theorem 3.6, For any system S, there is an atomic system S' such that S' = S.

Proof Sketch. By Lemma 3.4, we can assume proc(S) = {p}. By Lemma 3.5, we can assume
p is treelike. A process transformation is carried out in two steps, the intermediate
result of which need not be a process. First, P is constructed from p by "pruning"

162

p's tree so that only (K,f)-consistent paths remain, where K = int(S) and f = init(s).
Since p is treelike, there will be no ambiguity involved in deciding when to prune.
Now Py is constructed from P by condensing paths involving variables in K. This con-
struction is not carried out in stages because of the possible condensation of infinite
paths to finite paths. The possibility that P could continue forever on branches
invelving only variables in K involves transition to a final state of Py Finaily, §
is the atomic system such that proc(S') = {pz} and ext(S') = ext(S).

]

Unbounded Nondeterminism

We argue that it is natural to use countable nondeterminism for the basic process
model. Restriction to finitely many states would surely be unnatural, ruling out
processes which resemble natural sequential computation models such as Turing machines,
But the usual models, though having infinitely many states, are restricted to finite
nondeterminism. This restriction does not seem overly strong in more conventional
settings, since it is preserved by natural sequential combination operations, But for
the asynchronous parallel case, the finite-branching property would not be preserved
by our combination and internalizing constructions. The next result implies that any
behavior of a process can be realized as the external behavior of a pair of communi-
cating finite-branching processes. Since behaviors realizable by finite-branching
processes form a proper subset of those realizable by all processes (as we show by
Example 3.9), uniformity requires at least countable nondeterminism.

More precisely, a process p is finite branching provided start(p) is finite, and
also for any s e nonfinal{p), x e variables(p), u £ values({x), there are only finitely
many t, v with ((s,p,t),(u.x,v)) ¢ oksteps{p). A system S is finite branching if
every process in proc(S) is finite branching. In the following theorem, let p denote
the process of Example 2.6. Process p is finite branching and finite state. Assume
variables(p) = {x}, and f(x) = 0.

Theorem 3.7. Let S be a system of processes, p ¢ proc{S). Then there exists an atomic
finite branching system 51 such that § = consist{x} f(S]) Sp), where Sp is the fixed

atomic system with proc(Sp) = {p}, ext(Sp) = {x}, and int(Sp) = init(S.) = 2.

p

Proof Sketch. By Theorem 3.6, we can assume that S is atomic. Let proc(S) = {q}.

For each s ¢ states{q), y variables(q), u e values(y), there are only countably many
pairs (v,t} such that ((s,q,t),(u,y,v)} ¢ oksteps(q). Some ordering is fixed for each
such set of pairs. An ordering is also fixed for the elements of start(q). Process
q simulates a step of process q as follows. Process % alternately tests x and
increments a counter until it sees that x has been set to 1. It then uses the value
of its counter to select one of the possible alternatives of q to simulate and resets
the counter and variable x to O in preparation for the next step of simulation. S1

.;;

A

163

then is the system with proc(s1) = {q]}, ext(s]) = ext(S) v {x}, int(S1) = 1nit(51) =
p. m}

We conclude this section with an example of a set of sequences which can be ob-
tained as the behavior of a process, but not of any finite-branching process.

Lemma 3.8. Let p be a finite-branching process, x e variables(p), b ¢ (act(x))¥.
17 beh(p) contains infinitely many prefixes of b, thenb e beh({p).

Proof Sketch. By a Kinig's Lemma-style argument.

o
Example 3.9: Intuitively, we consider the specification to “"write a value any finite
number of times."

Let x be a variable, v e values{x), A = {(u,x,v) : u e values(x)}. A* is the set
of all finite sequences of actions, each of which "writes v" into x. A* can easily
be realized as beh(p) for a process p which uses countable nondeterminism to choose
an element of N for a counter initialization. Process p alternately decrements the
counter and writes v, halting when the counter is O.

On the other hand, Lemma 3.8 implies that A* is not beh(p) for any finite-branch-
ing process p, since b = (v,x,v)" has all of its finite prefixes in A*.

4. Examples

In this section, we discuss behavior specification for a typical distributed
system - an arbiter. (A similar treatment has been worked out for a ticket distribu-
tion system, but space limitations preclude inclusion of the details of this second
example.) We also describe particular and diverse implementations within cur model
that realize this behavior. We do not espouse any particular formal specification
language, but rather express behavior restrictions in general mathematical terminology.

The specification example follows a pattern which has more general apptiicability,
so we Tirst describe that pattern. A finite set X of varjables is accessed by a "user"
and by a "system". The user is required to follow a simple and restrictive behavior
pattern; formally, a set U < B(X) of "correct user sequences" is defined. The system
is to be designed so that when it is combined with a user exhibiting correct behavior,
with correct initialization of variables, certain conditions (on the values of vari-
ables) hold. Formally, a set M c ({user,system} x act(X))count is defined in order
to describe the desired conditions. A total assignment f for X is defined in order to

describe correct initialization of variables.

In a sense, U, M and f may together be regarded as a specification for the be-
havior of the desired system: any b e B(X) can be considered "acceptable” if whenever
it is combined consistently with a sequence in U, the resulting combination is in M.

A system of processes is a correct implementation if all of its external behavior

164

sequences are acceptable.

Acount

More formally, if A is any set,t ¢ » L any set, x any element of L, then

3{ denotes that element of ({x} x A)Count whose ith element is (s,ti), where ts is the
ith element of t. (That is, the entire sequence is Tabelled by x.)} This superscript

count

operator is extended to subsets of A in the obvious way.

For X, K sets of variables, L any set, t e (L x act(X))count, f a total assign-

ment for K, we say that t is (K,f)-consistent provided the sequence of second compan-
ents of t is (K,f)-consistent.

In the present examples, L is taken to be {user,system}, a set of identifying
labels for the modules of interest.

A sequence b & B(X) is called (U,M,f)-acceptable provided

{c & shuffle(UYSe",pSYSteM ¢ 4o (X,f)-consistent) M. Then a system of processes
S would be considered to be a correct implementation provided every sequence in
extbeh(S) is (U,M,T)}-acceptable,

However, this type of description may be somewhat difficult for a system designer
to use as a specification, so that it may be helpful to define explicitly a set B
of (U,M,T}-acceptable sequences. Any system of processes S with extbeh(S) c B is
then considered correct. B should be as large as possible so as not to constrain
the system designer unnecessarily. In the following example, we are able to obtain
B exactly equal to the set of (U,M,f)-acceptable sequences, thus providing an
explieit correctness characterization. We do not yet have a general equivalence
theorem for specifications, however.

Example 4.1: Arbiter

Values(x} = {E,A,G} for each x ¢ X. Intuitively, E indicates "empty”, A indicates
“ask" and G indicates "grant" of a resource. The user is restricted simply to
initiating requests and returning granted resources. More precisely, U < B(X) is
defined as follows.

(let a ¢ shufﬂe({ax : X £ X}), where each a e B(x).

a e U iff for each x ¢ X, (a)-(c) hold }
- Tength(a_) k
(tet a, = (ugpux,v)50 x’.)

(a) Correct Transitions

For all i, 1 < i 5.1ength(ax), if uj = E then v # G, and if uy = A then Vi = U

(The user cannot grant a request, and once he has initiated a request he cannot re-
tract it.)

165

{b) Stopping
If ay is finite and nonempty, then V]ength(ax) = E, (The user cannot leave the system
when a request is pending or granted.)

{c) Return of Resource

For all i, if u; = G then there exists j > 1 with v; # G.

(If the user sees that his request has been granted, he must eventually return the
resource.)}
=
Thus, user correctness is defined locally at each variable. In particular, the
user can consist of separate processes, one for each variable, with no communication
between them. It is easy to design various sets of processes with behavior a subset
of U.

Correct operation for our arbiter system will require that all requests eventu-
ally be granted, and that no two requests be granted simultaneously. Of course,
variants on these conditions could be specified instead.

Let f = ax[E], L = {user,system}. Mc (L x act(X))count is defined as follows.
c e Miff ¢ is (X,f)-consistent and both (a) and (b) hold.

(a) Local Conditions

(Let ¢ e shuffle({c, : x € X}), each ¢, € (L x act{x))coUnt)

For each x € X, both (al) and (a2) hold.

(Let ¢, = (2, (upxvy)) EN9ER(E))

{al) Correct Transitions
For all i, 1 < i f_]ength(cx), either uj = v;or else one of (all)-(al3)} holds.

(a11) Li = user, u; = E and v = A,
(al2) Li = user and u; = G.
(a13) L, = system, u; = A, vy = G.

(The allowed transitions are depicted at right.)

E-user

user T user A
6 system
(a2) Progress

For all 1, if vy # E then there exists j > i with V5 # Vi

(Any value other than E is eventually changed.)

166

(b) Global Conditions

t - Tength(c
(Let c = (’z]"(u‘i’x';’v'i));lizqg h(C), d= (u.iax.i :V.i).i=.lg ().)

(b1) Mutual Exclusion

For no X1s¥%p € X, S # Xo and no prefix e of d is it the case that
1atest(e,x],f) = 1atest(e,x2,f) = G.
a
Next, we define B.
b £ B iff either (a) or (b) holds.

(a) Initialization or User Observed to be Incorrect

(Let b € shufﬂe({bx : x £ X}) as before.)

For some x & X, one of {al)-(a3) holds.

_)1ength(bx).)

(Let bx = (ui,x,v1 i=1

(al) u; = G
(a2) For some i, vy = E and Uy = G, or else Vi = A and Us g # A,
(a3) length (bx) = o, and up = G for all sufficiently large 1.

{Thus, a sequence is "correct" if it involves incorrect action on the part of the
user or an incorrect initialization of the variables. It is the job of the system
designer to discover how such errors can be detected during system operation. It is
easy to program a system to check for errors such as those represented in (al) and
{a2), but (a3) errors could not be detected at any finite point during the computation
However, the system is required to obey some conditions involving infinite execution
sequences. It is possible to allow some of the system's "eventual" behavior to wait
for the user's "eventual" behavior. An example will be seen in Implementation 1.)

(b) Correctness Conditions
Both (b1) and (b2) hold.

(b1) Local Conditions
(Let b € shufﬂe({bX : x e X}) as before.)

For each x € X, (b11)-(b13) all hold.

]ength(bx)')

(by = (u55%v3)5

(b11) Correct Transitions

For all i, if u; = E or G, then Vi T U, and if uy = A, then Vi ® A or G.

(b12) Infinite Examination

by is infinite

167

b13) Response
For a1l i, if u; = A, then for some j > 1 it is the case that Y 7 A.
(b2) Global Conditions

- Tength(b)
(Let b = (usaxy5v4)57)

{b21) Mutual Exclusion

For no X]:Xg € X, X # Xos and no prefixd of b it is the case that
Tatest(d,x],f) = 1atest(d,x2,f) = G. 2
The following theorem shows that our explicit characterization for system behavior
is as general as possible.
Theorem 4.2: For U,M,f,B of this example, B = {b : b is (U,M,f)~acceptable}.
Proof: < :letbeB,acel,ce shuff]e(auser,bsy“em), c (X,f)-consistent. We
must show ¢ & M.

Since a € U and ¢ is (X,f)-consistent, we can show that b fails to satisfy (a)
of (the definition of) B. Thus, b satisfies (b) of B.

We check that ¢ satisfies each condition of M. ¢ satisfies (al) of M because of
(a) of U and (b11) of B. To verify (a2) of M, write c ¢ shufﬂe({cx : x € X}), and

for fixed x, write c, = (!;.,(u.,x,vi))}g?gth(cx). If (!L].,(ui,x,A)) is an element of

(e
c, then (b12) and (b13) of B together imply that for some j > i, Vi #A If
{£;,{u;,x,6)) is an element of c, then Tet j be the largest number < i with £, = user.
By {b11) of B, j exists and vy = A or G. Then by (b) of U, there exists k > 1 with
£k = user. If u # G we are done. Otherwise, (c¢) of U implies that for some m > X,

vm#G.

(b1) of M follows easily from (b21) of B and (a} of U.

> :let b¢ B. We must produce a e U, ce shuffle(a"€", system), ¢ (X,f)-consistent,
and ¢ £ M. Clearly, b fails to satisfy (a) of B. In addition, h will fail to satisfy

at least one of (b11), (b12), (b13) and (b21) of B.
We consider four cases.

(b11) fails: Any a € U, ¢ ¢ shuffle(a’S®", Y5t which is (X,f)-consistent will
fail to satisfy (al) of M. One such c can be constructed by immediately preceding
each element (system,(u,x,v)) of ¢ which is derived from an action of b by an element
{user,(v,x,u)). The value of y is uniquely determined by the consistency requirements
oh c; since p fails to satisfy {(a) of B, this determination produces a e U.

(b12) fails: Consider x such that actions (usx,v) only appear finitely often in b.

168

Construct a e U, ¢ & shuff]e(auser,bsyStem), ¢ (X,f)-consistent, with the following
property. In c, following all elements of the form (system, (u,x,v)) (for any u,v),
there is an element of the form (user,{u,x,A)) (for some u), and following that
element there are infinitely many elements. of the form (user,(A,x,A}). Such a, ¢
can be constructed by a slight addition to the construction for the preceding case.
The resulting c fails to satisfy (a2) of M.

{(b13) fails: Consider x such that (A,x,A) occurs in b and moreover for all following
actions in b of the form (u,x,v), we have v = A.

Then any a € U, c ¢ shuff1e(auser,bsy5tem) which is (X,f)-consistent will fail

to satisfy (a2) of M. Such a, c can be constructed as before.

b21) fails: Let b = (ui,xi’vi)}:qgth(b), where (uj,xj,G) and (uk,xk,G) are actions

witnessing the contradiction to (b21) of B. We can assume that j < k, Xj # Xy and
fornom, J <m< k it is the case that Xy = Xy

J ;
Construct a e U, ¢ e shuffle(auser,bSyStem), ¢ (X,f)-consistent, with the follow- j
ing property. In ¢, the elements derived from b's actions (uj,xj,G) and (uk,xk,G) ;

have no intervening elements of the form (user, (u,xj,v)) for any u, v. Such a, ¢
fail to satisfy (bl) of M.

Such a, ¢ can be constructed as before.
0
The given description of B seems sufficiently manageable to be used to specify
system behavior. B 1is also sufficiently general to admit many different implementa-
tions - i.e. processes or communicating groups of processes with behavior a subset
of B but with very different internal structure and execution behavior. Outlines of
three such examples follow.

Implementation 1: The simplest implementation is a single process p which polls each
variable in circular sequence. When A is read, p changes it to G and then repeatedly
reads that variable until its value reverts either to E or A. When this occurs, p
resumes polling with the next variable.

Note that p may fail to examine some variable after some time, contradicting
(b12) of the definition of B. But the only way this can occur is if the user acts
incarrectly, failing, for example, to change G to E or A. Then the execution will
satisfy, for example, (a3) of the definition of B. Thus, although p does not actually
detect certain incorrect user behavior, it nevertheless can cause its own correct
eventual behavior to depend on the eventual correctness of user behavior.

Checking that beh(p) = B is straightforward.

Implementation 2: The idea of Implementation 1 can be extended to allow "more con-

169

currency” using a binary tree of polling processes, with the Teaves accessing the
interface variables x ¢ X.

Each non-root process p alternately polls its left and right son variables. When
A is seen, p changes its own father variable to A. When the father variable changes
to G, p grants its pending son's request by changing the appropriate A to G. p then
waits for that son variable to revert to either E or A. When this occurs, p changes
its father variable to E and then resumes polling its sons with the other son being
polled next.

The root process acts just like p of Implementation 1 for |X| = 2.

One must do a 1ittle work to convince oneself that the alternating strategy
guarantees eventual granting of all requests. A1l other properties in the definition
of B are easy to check, if all father variables are assumed to be initialized at E.

Implementation 3: The third implementation is based on the state-model algorithms
used in Burns et al [9], (see also Cremers-Hibbard [8]). This time, the implementing
system consists of identical processes Py each of which has access to exactly one of
the interface variables. In addition, there is a common variable x* to which all the
processes p, have access. One of the algorithms from [9], such as algorithm A, is
used. This algorithm enables asynchronous processes requiring mutual exclusion syn-
chronization to communicate using x* to achieve the needed synchronization, with good
bounds on the number of times any single process might be bypassed by any other (and
with a very small number of values for x*). The processes themselves must be willing,
however, to execute a complicated protocol. In the present development, we have de-
fined a very simple arbiter protocol and do not require a user to learn the more
complicated protocol of the earlier algorithm. We can still use the earlier ideas,
however, by isolating the earlier protocol in the system processes and allowing a user
to communicate with one of those processes.

In outline, and referring to some ideas from algorithm A, the Py accessing x
examines x until A is detected. Then Py enters the trying protocol using x*. When
Py is allowed (in algorithm A) to enter its critical region, it passes the permission
on by changing the value of x to G. Py then examines x until it reverts to E or A,
and then Py enters the exit protocol using x*. When Py has completed its exit protocol,
it is ready to begin once again, examining x for further requests.

Correctness of the resulting system of communicating processes is easy to under-
stand based on that of Algorithm A. o

The main point to be made by this example is that there are many different pro-
cesses and systems of processes which can meaningfully be said to realize the same
jnput-output behavior. In the three implementations above, the systems vary both in
process configuration and in execution. There is no realistic sense in which the

170

internal states and transitions (i.e. the execution sequences) of the different
implementations could be thought to simulate each other. And yet, they are all so-
lTutions to the problem of constructing an arbiter.

A technical question which may be of interest for the purpose of obtaining a
sequence-based characterization for behaviors in whether B in the above example is
exactly equal to extbeh(S) for some system S. It is not hard to show that U can be
so obtained.

5. Complexity Measures

Separation of behavior and implementation opens the way for comparison of differ-
ent implementations of the same behavior, a fundamental subject of study for any
theory of computation. Intuitively, comparisons might be made on the basis of process
configuration, local process space requirements, communication space requirements,
number of local process steps executed, number of changes made to variables, and
possible "amount of concurrency". Tradeoffs would be expected.

Configuration and space measures seem easy to formalize. For instance, the
three implementations in Example 4.1 use 1, n-1 and n processes, 0, n-2 and 1
auxiliary communication variables, and 0, 3 and n+5 values for each communication
variable, respectively.

In contrast, time and concurrency measures are not so straightforward. For
instance, "response time" might be expected (sometimes) to be better for Implementa-
tions 2 and 3 than for Implementation 1 of Example 4.1, because of "use of concurrency".
But much work remains to be done in quantifying such time comparisons.

In order to state time bounds, one must meet several requirements. First, one
must decide what actions to count during execution. Second, in order to state time
bounds as closed-form functions {e.g. "runtime = 2n2"), one requires an appropriate
notion of the "size of the task being accomplished", (i.e. an appropriate parameter
n on which to base complexity analysis). Finally, one needs to establish appropriate
quantification over alternatives in the present nondeterministic setting. We believe
that partial orders of the type studied by Greif [11] and Hewitt [12] will provide
useful ways of satisfying the first requirement but do not yet know how best to
satisfy the remaining requirements.

In some detail, let X be a set of varjables, p a set of processes,

)1ength (a)
i=]

a = {{s3:p5:t5)s (Uy5x45v4))42 be a sequence of elements of steps(P,X). For

i, J e N, define i P' j iff i < j and either Xj = Xy Or py = ps. Let P be the tran-

J J
sitive clasure of P'. In words, P formalizes the ordering of steps of a imposed by
the sequentiality of each individual process and each variable. P seems to provide
much useful information about the "running time" and “possible concurrency" in a,
including some seemingly natural formal measures. An important remaining task is the

171

use of these measures to obtain clean statements of upper and Jower complexity bounds,
both for particular systems and for the collection of systems realizing particular
specified behavior.

REFERENCES

[1] Petri, C.A., "Kommunikation mit Automaten," Schriften des Reinish Westfalischen
Inst. Instrumentelle Mathematik, Bonn. 1962.

[2] Hoare, C.A.R., "Communicating Sequential Processes," Technical Report, Depart-
ment of Computer Science, the Queen's University, Belfast, Northern Ire-
land, December, 1976.

[3] Milne, G. and R. Milner, "Concurrent Processes and Their Syntax," Internal
Report CSR-2-77, Department of Computer Science, Edinburg, May, 1977.

[4] Dijkstra, E.W., "Co-operating Sequential Processes," Programming Languages,
NATA Advanced Study Institute, Academic Press, 1968,

[5] Campbell, R. and A. Habermann, "The Specification of Process Synchronization
Using Path Expressions," Lecture Notes in Computer Science, 16, Springer-
Verlag, 1974.

[6] Shaw, A.C., "Software Descriptions with Flow Expressions," IEEE Trans. on
Software Engineering SE-4, 3 (1978), 242-254,

[71 Feldman, J., "Synchronizing Distant Cooperating Processes," Technical Report
26, Department of Computer Sciences, University of Rochester, October, 1977.

[8] Cremers, A. and T. N. Hibbard, "Mutual Exclusion of N Processes Using an O(N) -
Valued Message Variable," USC Department of Computer Science Manuscript,
1975.

[9] Burns, J.E., M. J. Fischer, P. Jackson, N.A. Lynch, and G. L. Peterson,
"Shared Data Requirements for Implementation of Mutual Exclusion Using a
Test-and-Set Primitive," Proceedings of 1978 International Conference
on Parallel Processing (1978).

[10] chandra, A.K., "Computable Nondeterministic Functions," Proceedings of 19th
Annual Symposium on Foundations of Computer Science, 1978.

[11] Greif, Irene, "A Language for Formal Problem Specification," Comm. ACM, 20,
12 (1977), 931-935.

[12] Atkinson, R. and C. Hewitt, "Specification and Proof Techniques for Serializers,"

AT Memo 438, Massachusetts Institute of Technology, August, 15877.

